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Abstract

Prosthetic devices need to be controlled by their users, typically using physiological signals. People tend to look at objects
before reaching for them and we have shown that combining eye movements with other continuous physiological signal
sources enhances control. This approach suffers when subjects also look at non-targets, a problem we addressed with a
probabilistic mixture over targets where subject gaze information is used to identify target candidates. However, this
approach would be ineffective if a user wanted to move towards targets that have not been foveated. Here we evaluated
how the accuracy of prior target information influenced decoding accuracy, as the availability of neural control signals was
varied. We also considered a mixture model where we assumed that the target may be foveated or, alternatively, that the
target may not be foveated. We tested the accuracy of the models at decoding natural reaching data, and also in a closed-
loop robot-assisted reaching task. The mixture model worked well in the face of high target uncertainty. Furthermore, errors
due to inaccurate target information were reduced by including a generic model that relied on neural signals only.

Citation: Corbett EA, Körding KP, Perreault EJ (2014) Dealing with Target Uncertainty in a Reaching Control Interface. PLoS ONE 9(1): e86811. doi:10.1371/
journal.pone.0086811

Editor: Marc O. Ernst, Bielefeld University, Germany

Received March 19, 2013; Accepted December 18, 2013; Published January 28, 2014

Copyright: � 2014 Corbett et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This material is based upon work supported by the National Science Foundation under Grant No. 0939963. The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: ecorbett@u.northwestern.edu

Introduction

People will almost always look at an object before reaching for it

[1], providing us with a rich source of information about their

intended arm movements. Such a means of decoding intent may

be useful for a range of user interface applications [2], including

the restoration of communication or movement to people whose

arms have been paralyzed. As eye-tracking systems become less

expensive this signal source is gaining attention as a viable, non-

invasive tool for such rehabilitation applications [3]. However,

gaze may be a problematic input signal when used alone as it can

be difficult to determine which saccades are intended as control

signals, and it is very challenging to control eye movements

precisely for extended periods of time. In particular, if the purpose

of the interface is to restore movement with a neuroprosthesis it is

vital that saccades away from an intended reach target do not

generate unintentional commands. Furthermore, the interface

would be unlikely to succeed if it restricted the user’s ability to look

around their workspace. Gaze may be an extremely useful control

signal, but the user interface must be able to safely deal with the

associated uncertainty.

For the severely impaired, the set of physiological signals under

voluntary control that can be used in a rehabilitative interface may

be extremely limited. In such cases, it often makes sense to

combine control information from disparate signal sources [4], [5].

For example, Batista et al. found that they could improve target

selection performance in a brain-computer interface by monitor-

ing eye movements [6]. A number of groups have improved

trajectory decoding by taking advantage of the directional nature

of reaching [7–9], by combining information about the reach

target with neural trajectory control signals. Such target informa-

tion may come from recordings in the dorsal pre-motor cortex

[10], [11], and sometimes with prior knowledge of the distribution

of potential targets [12]. Following this logic, we used target

estimates from gaze to enhance our model of the reach trajectory

when decoding reaching movements with electromyograms

(EMGs) [13]. We evaluated this interface with a robot-assisted

reaching task, as a proxy for a neuroprosthesis, finding that the

incorporation of gaze improved control and reduced the burden

on the user [14].

As people may saccade to other locations in addition to the

reach target, it is necessary to account for uncertainty in the target

estimates. This was accomplished in our algorithm by using a

mixture model initiated with a probabilistic distribution of

potential targets obtained from the gaze in the one-second period

before the reach [14]. However, our experiments were performed

under controlled conditions with reasonably attentive subjects.

While our decoder was designed to account for multiple potential

targets, its performance under highly uncertain conditions had not

been directly evaluated. Furthermore, the algorithm made the

assumption that the target would be foveated in the period

preceding the reach. While this was a generally safe assumption, in

a worst-case scenario in which the target was never foveated,

incorrect target information could cause unwanted movements. A

user may initiate a reach unintentionally or be distracted and look

away from the target. Additionally, calibration issues with the eye

tracker could result in inaccurate target estimates. These may be
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rare occurrences, but due to the potentially high cost of an error

they are important to consider. A safe and reliable neuroprosthesis

interface would need to deal with these situations gracefully.

Decoding performance in the face of target uncertainty will

depend on the amount of neural or other continuous physiological

signals being incorporated, as those signals inform the decoder

about the probability of each potential target. The mixture model

considers a different trajectory for each of the potential targets,

and weights them probabilistically. As the continuous signals are

integrated over the course of the reach, their likelihood is

evaluated for each of the trajectories and used to assign the

weights. In [13] we evaluated the decoding of natural human

reaching, combining target estimates from gaze with different sets

of EMGs in an attempt to simulate the control signals that might

be available at different levels of spinal cord injury (SCI). While

incorporating gaze clearly reduced the reliance on the EMG, the

decoding still suffered somewhat when the number of available

EMG signals was most limited. In our closed-loop evaluations, in

able-bodied subjects performing a robot-assisted reaching task, we

used EMGs typically available at the fourth and fifth cervical levels

(C4 and C5) and there was no difference in accuracy between the

two conditions [14]. However, performance appeared to be more

reliant on the accuracy of the gaze data in the C4 case. The gaze

produced by the subjects during simulated C5-level control was

less accurate, presumably because they could compensate for

errors using the additional EMG signals that were included in the

interface. This indicated that it may be more difficult to

compensate for target uncertainty in the C4 case, with fewer

EMGs, and its effect on reach accuracy was unknown. Without a

rich set of neural data, it may be difficult for the decoder to select

the correct target in uncertain conditions.

Here we considered what happened as the quality of our target

estimates declined. We tested the decoding of natural reaching

data at the various simulated injury levels while replacing the gaze

with simulated noisy target estimates, systematically evaluating the

performance of the mixture model and its dependence on the

available neural signals. We also proposed an extension to the

algorithm that accounted for the worst-case scenario where the

target was not foveated by including a generic model with no

target information into our mixture model, giving more control to

the user’s neural signals when they indicated that none of the

target estimates were likely to be correct. Finally, we evaluated the

original and modified mixture models in closed-loop robotic

control of the arm, again with simulated noisy target estimates. C4,

the most impaired simulated injury level, was used for the closed-

loop evaluation because it was at this level that the inclusion of

target information produced the most substantial performance

gains. Furthermore, it provided the most challenging test for the

mixture models where the EMG was most limited. We found that

subjects could adapt to the mixture models and deal well with

target uncertainty, and the algorithm modification helped

substantially when the target information was inaccurate. Portions

of this work were presented previously in a conference publication

[15].

Methods

In previous work we developed and tested a mixture of targets

model that incorporated gaze with EMG in a reach decoder [13].

Here we simulated uncertain target information to evaluate how it

would perform in the presence of ‘‘noisy gaze’’ when subjects

became distracted or foveated locations in addition to the target.

We also proposed an extension to the mixture model to mitigate

the worst-case scenario when the target information is inaccurate.

These approaches were tested in both an offline decoding setting

and in closed-loop control of robot-assisted reaching. The original

and extended mixture models were compared, with different levels

of target uncertainty, to a decoder driven by EMG alone. The

algorithms that are common to both experiments were described

first. The three decoders were then compared with varying

quantities of EMG data, simulating different levels of SCI, in an

offline analysis using the natural reaching data from [13]. They

were then tested at the most impaired simulated injury level in

closed-loop control using a robot-assisted reaching task.

Ethics Statement
All subjects provided informed written consent to the experi-

mental protocol, which was approved by Northwestern Univer-

sity’s Institutional Review Board.

Decoding Algorithms
With no prior knowledge of the target location, our best

prediction of the reach kinematics should come from a decoder

driven by neural data alone. For this case we used the generic

Kalman filter (KF) [16] framework where an observation model,

defining the mapping from the neural data to the kinematics, is

combined with a trajectory model, describing the evolution of the

kinematics over the course of the reach. We defined a trajectory

model where the kinematics evolved linearly over time while

integrating Gaussian noise:

gt~ zt _zzt €zzt½ �T~AGgt{1zwt, ð1Þ

where zt represented the hand or arm position vector at time t, gt
was the state vector consisting of zt and its first and second

derivatives, and AG was the state transition matrix for the generic

trajectory model. The process noise, wt, had a zero-mean,

Gaussian probability distribution, p(w) , N(0,Q), where Q was

the state covariance matrix.

We used a linear Gaussian observation model to map features of

the EMG to the reach kinematics:

yt~Cgtzvt ð2Þ

where yt was the EMG feature vector at time t, vt was Gaussian

noise with p(v) , N(0,R), and R was the observation covariance

matrix. We chose the root-mean-squared (RMS) value (a measure

of the magnitude) and number of zero crossings (a frequency

measure) in the sample time-window of EMG as features, and

square-root-transformed them for more Gaussian-like distribu-

tions.

In the KF recursion at each time-step, the a priori estimates of

the current state and covariance were predicted from their a

posteriori estimates at the previous time-step through the trajectory

model. These a priori predictions were then updated using the

current time-step’s observation, and the a posteriori estimate was

found as an optimal combination of the two models’ predictions.

To create a Kalman filter with target information (KFT), we

employed a directional trajectory model by adding the target

position into the state vector, assuming a linear time-invariant

effect on the kinematics:

xt~
gt

zTt

� �
~ zt _zzt €zzt zTt½ �T~Axt{1zwt ð3Þ

where zTt was the target position vector, with dimensionality less

than or equal to that of zt and A was the state transition matrix for

Target Uncertainty in a Reaching Control Interface
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the directional KFT model. The same observation model from

equation 2 was used to evaluate the KFT, with xt in place of gt.

When accounting for uncertain target information, as when

target estimates were based on eye movements, the KFT was

evaluated for multiple potential targets. We obtained a prior

distribution for the possible targets, P(zTt), which in our previous

work we obtained from the subjects’ gaze. As the neural data were

integrated over the course of the reach (y1….t), it informed us about

the likelihood of each of the possible resultant trajectories. A

probabilistic mixture model (mKFT) over each of the N potential

targets zT provided our final state estimate:

P xtDy1:::tð Þ~
XN
n~1

P xtDy1:::t,zTn
t

� �P y1:::tDxnt
� �

P zTn
t

� �
P y1:::tð Þ : ð4Þ

The KF recursion was performed for each potential target, zTn,

and the predicted state, P(xt | y1….t), was a weighted sum of the

state estimates from each model, P(xt | y1….t,zTt
n), where the

weights were proportional to the prior for the associated target,

P(zTt
n) and the likelihood of the trajectory given that target P(y1….t

| xt
n). P(y1….t) was independent of the target and therefore was

used as a scaling factor to ensure that the weights summed to 1.

Thus, the weights are initialized to the prior probabilities assigned

to them, but as the EMG information comes in over the course of

the reach the likelihoods of the EMG for the different trajectory

models should diverge, causing the weight for the more probable

model to dominate.

Here we wanted to modify the algorithm to recover as safely

and gracefully as possible if the target information failed. If our

information about the reach target was inaccurate, the best we

could hope for would be that, rather than following a trajectory to

an incorrect target, the reach could be guided with the subject’s

neural control signals alone. With this goal in mind, we added the

generic KF component into the mixture model (mKFT+KF):

P xtDy1:::tð Þ~
XN
n~1

P xtDy1:::t,zTn
t

� �P y1:::tDxnt
� �

P zTn
t

� �
P y1:::tð Þ

 !

zP gtDy1:::tð ÞP y1:::tDgtð ÞPG

P y1:::tð Þ :

ð5Þ

If for each reach the generic model was initiated with a low

prior probability, PG, it would only come into play if the neural

data indicated that none of the other potential trajectories were

probable. As the EMG information was integrated over the reach,

if its likelihood for the generic model (P(y1….t | gt)) was high relative

to the directional trajectory models then the weight of the generic

model would dominate; otherwise, the weight for the generic

model should remain close to zero.

Offline Evaluation of Natural Reach Decoding
We first compared the offline decoding accuracy of the generic

KF (EMG alone) to that of the two mixture models, with varying

amounts of target uncertainty, using unconstrained 3D reaching

data over a wide range of dynamics from [13]. We used three sets

of EMGs recorded from able-bodied human subjects, simulating

C6, C5 and C4-level SCIs. While data from able-bodied reaching

are not necessarily representative of real neuroprosthesis use, this

analysis allowed us to study the effect of the quantity of neural data

on the two mixture models as they dealt with target uncertainty.

The data collection is briefly summarized below, followed by a

description of the analyses.

Data collection. We recorded arm kinematics and EMGs

from five able-bodied subjects performing reaches towards 16

LED targets, located on two planes positioned such that all of the

targets were just reachable (figure 1a). Each subject performed

between 450 and 500 reaches at varying speeds, as might occur in

everyday life, while comfortably seated and restrained with lap and

shoulder straps. EMG signals were recorded from the ipsilateral

brachioradialis, biceps, long and lateral heads of the triceps,

pectoralis major (clavicular head), posterior, middle and anterior

heads of the deltoid and upper trapezius. The EMG signals were

amplified and band-pass filtered between 10 and 1,000 Hz using a

Bortec AMT-8 (Bortec Biomedical Ltd, Canada), anti-aliased

filtered using 5th order Bessel filters with a cut-off frequency of

500 Hz, and sampled at 2,400 Hz. Hand, wrist, and shoulder

positions were tracked at 60 Hz using an Optotrak motion analysis

system (Northern Digital Inc, Canada).

Analysis. For each subject, 100 reaches were randomly

selected for testing while the remainder were used to train the

models. In the state vector we used joint angles (3 shoulder, 2

elbow) and finger position, velocity and acceleration. Joint angles

were calculated from the shoulder and wrist marker data using

digitized bony landmarks which defined a coordinate system for

the upper limb as detailed by Wu et al. [17]. We performed the

analysis with three different sets of EMGs, simulating the residual

muscle activity typical at different levels of SCI. To simulate a C4-

level injury we used just the upper trapezius; for C5 we added the

three heads of the deltoid, the biceps, the pectoralis major and the

brachioradialis; for C6 we also included the two heads of the

triceps, which may have residual activity in this population

(figure 1b). As we performed decoding at 60 Hz, the EMG

features were extracted from the corresponding 16.7 ms windows

to be used as observations of the state at each time-step. We

estimated the decoder parameters from the EMG and arm

kinematic data using least squares regression. In the case of the

directional trajectory model estimation (KFT), the final position of

the finger at the end of the reach was inserted into the state vector,

representing the target.

We evaluated the decoding approaches by comparing their

predictions of the finger position in the test reaches. To evaluate

performance with different levels of target uncertainty we

simulated the potential targets. Specifically, for the mKFT, we

initiated each reach with two potential targets – the actual finger

position at the end of the reach and a randomly selected position

from the set of potential targets. We then varied the prior for the

random target between 0 (perfect target information) and 1

(completely random target information). The mKFT+KF was

tested with the same simulated targets. The prior for the generic

model was selected to be PG=0.1 and the non-zero priors for the

remaining targets were reduced each by 0.05 or 0.1 if there was

only one target represented in the mixture.

For the mKFT+KF we quantified a histogram for the value of

the weight assigned to the generic model for each level of target

uncertainty (prior for the random target). Algorithm accuracy was

quantified using the multiple R2 [18], which is a measure of

accuracy that incorporates the entire reaching movement.

Intuitively, the multiple R2 evaluates the accuracy across all three

dimensions, weighing each dimension in proportion to its

variance. However, because all targets were limited to two planes,

a substantial component of this R2 was related to movement

common to all reaches. Hence, we also quantified the error at the

final time of the reach using the target variance accounted for

(VAF), by scaling the squared error at that time by the variance in

Target Uncertainty in a Reaching Control Interface
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the LED target positions:

Target VAF~ 1{
X

i~X ,Y ,Z

ziT{ẑziT
� �2
var pLEDið Þ

 !
=3

 !
ð6Þ

where T is the final time of the reach, pLED are the LED locations

in space, and i indexes the dimensions X, Y and Z. The conditions

were compared using an ANOVA where the simulated injury level

and the combination of algorithm and the prior probability assigned to

the random target were included as fixed effects, and subject was a

random effect. A Tukey post-hoc test was performed and all

statistical comparisons used a=0.05.

Closed-loop Evaluation
A robotic system to assist reaching was used to test the decoders

in closed-loop control. The robotic system accurately positioned

the arm based on the decoded kinematics, thereby isolating

performance issues relevant to decoders and signal sources and

providing a wider subject population on which to evaluate the

approaches. By moving the subject’s arm along with the decoded

reaches, the subjects were provided with a more realistic feedback

consistent with neuroprosthesis use than would be available with a

virtual interface. Furthermore, it ensured that the EMG signals

were consistent with the movement of the arm.

The simulated C4-level injury was tested in closed-loop control

because it had demonstrated the greatest performance increase

from the inclusion of target information in our previous work.

Also, the offline results (see below) indicated that the system would

perform well in the face of target uncertainty with sufficient EMG.

As there was only a single EMG available at C4 to inform us about

the probability of the various mixture components, the effects of

the target priors could be expected to be greater than at other

simulated injury levels. We did not know how well subjects would

be able to manipulate this interface with uncertain target priors; in

our previous experiments the accuracy of the mKFT had

appeared to be driven almost entirely by the precision of the

target estimates from gaze. For more detailed descriptions of the

experimental paradigm see [14].

Subjects and experimental setup. Five able-bodied, right-

arm dominant subjects took part in this experiment. Four of the

five subjects had previously participated in similar experiments

[14]. Each subject gripped a 3 degrees of freedom HapticMaster

robot (Moog FCS, the Netherlands), mounted at 90u to the wall,

which moved the subject’s right hand throughout a reaching

workspace (figure 1c). The robot was stiff (20,000 N/m) and could

not be manipulated by more than a few millimeters by voluntary

forces at the hand. A spring-loaded stylus attached to the robot

handle allowed for soft contact with targets that were displayed on

two 37 cm630 cm touch-screen monitors (Planar PT19, Beaver-

ton, OR) within reach, at variable distances from the subjects. The

distances depended on the subject’s range of motion and the

average target for each subject ranged between 12 and 21 cm

from the starting position in the Z direction. Approximately 75%

of the total area of the monitors was within the robot’s workspace.

The subject was comfortably seated with the robot handle

positioned in front of their chest. The goal of the task was to

guide the robot to position the stylus in the centre of targets that

appeared on the monitors.

EMG signals were recorded from the right and left upper

trapezius, and processed as described above. The monitor and

HapticMaster positions were recorded using the Optotrak, so that

positions on the monitors could be transformed into the Haptic-

Master coordinate system. All signals were recorded simulta-

neously and processed at 60 Hz, so as to generate a real-time

command signal to control the robot. The velocities predicted by

the decoders were sent as kinematic control signals to the robot.

Protocols. Each experiment began with a set of training

reaches in which EMG and kinematic data were collected for

training the models. This involved the robot moving automatically

along a straight-line trajectory to a set of 18 targets spanning the

reachable area of the monitors, appearing twice in random order.

The subject held the handle of the robot and was instructed to

gently assist the reach, while the EMG from their right upper

trapezius was recorded. We chose this method because we wanted

control to be intuitive; it was important that the EMG controlling

the reaches corresponded as closely as possible to those a subject

would naturally make when attempting to reach while interacting

with the robot. The approach would also be appropriate for the

end users of the interface who would be unable to generate the

reaches themselves. The training reaches were generated using a

trajectory model that was linear in the kinematics and the target:

zt

_zzt

€zzt

zTt

0
BBB@

1
CCCA~

Ip Dt|Ip 0p 0p

0p Ip Dt|Ip 0p

{aIp {bIp 0p aIp

0p 0p 0p Ip

0
BBB@

1
CCCA

zt{1

_zzt{1

€zzt{1

zTt{1

0
BBB@

1
CCCA ð7Þ

Here zt was the stylus position at time t and zT was the target.

The matrix shows the structure for A in equation 3, with Ip and 0p
being the p|p identity and zero matrices. The parameters a and b

determined the velocity profile of the trajectory and were both set

Figure 1. Experimental setups A) Natural reaching data; B) Muscles recorded to simulate levels of SCI; C) Closed-loop experiment.
doi:10.1371/journal.pone.0086811.g001
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to 3. Least squares regression was then used to estimate the

parameters from the EMG and stylus kinematic data. The state

vector consisted of the three-dimensional stylus position, velocity

and acceleration. In the case of the KFT parameter estimation, the

final recorded position of the stylus, representing the target, was

also included.

In testing, the decoders were evaluated with a target acquisition

task. A target appeared on one of the monitors one second before

an auditory go cue, at which point the subject was free to initiate

the reach. The reach was initiated when the RMS feature from

either of the EMG channels (left or right upper trapezius) doubled

relative to its average value before the go cue. Subjects were

instructed to try to perform a natural reach, and if the ipsilateral

upper trapezius was activated the reach would initiate. For reaches

where the subject would not use the ipsilateral muscle naturally,

they could initiate the reach by shrugging their left shoulder. They

then guided the robot towards the target with their EMG, through

the velocity predicted by the decoder.

Each target consisted of a green circle of 1 cm radius

surrounded by 5 rings of various colors, each 1 cm thick. When

the movement was complete the color of the target changed to

provide performance feedback. For a missed target or if the reach

timed out (after 10 seconds) the target turned red, or if one of the

rings of the target was attained it turned the color of the

corresponding location. For attaining the green circle the subject

received a score of 10 points and for outer rings they received 9, 8,

7, 6 and 5 points. Feedback of the cumulative total of their most

recent 10 reaches was displayed to them to increase motivation.

The decoder using EMG alone (generic KF) was tested first.

Subjects performed 10 practice reaches to become familiar with

the decoder, followed by a block of 30 test reaches. Subjects then

performed 20 practice reaches of the KFT with perfect target

information, to become familiar with the directional model. This

was followed either by the mKFT or the mKFT+KF; the order of

these models was randomized across subjects. The mixture models

were tested in 5 blocks of 32 reaches. For the mKFT, each block

included 8 reaches with perfect target information. For the

remainder of the reaches, the mixture model was initiated with

two potential targets – the correct target and one selected

randomly from the workspace. Six reaches each were performed

giving the random target a prior of 0.2, 0.5, 0.8 and 1. The order

of reaches was randomized within each block. The same format

was followed when the generic model was incorporated into the

mixture, with a prior probability of PG=0.0001. This value was

selected as it worked well in some pilot experiments; however, its

selection was not optimized. The priors for the remaining targets

were reduced by equal amounts as appropriate.

Analysis. Reach accuracy was quantified in terms of the

target variance accounted for (VAF). While the target VAF was

quantified in 3 dimensions for the offline analysis, we used the

average of the target VAF in X and Y in the closed-loop case. This

made sense as all of the targets were situated on the two monitors

resulting in very little variation in the Z dimension. We also

calculated the multiple R2 between the executed reach and the

ideal straight-line reach found using the method for generating

training reaches. We evaluated the trajectory straightness by

calculating the path efficiencies of the reaches. This was calculated

using the ratio of the straight-line distance from the start to the end

of the reach to the cumulative distance travelled:

PE~100%| 1{
dis z1,zTð ÞPT{1

t~1

dis zt,ztz1ð Þ

0
BBB@

1
CCCA ð8Þ

where dis() is the distance function. Finally, as for the offline

analysis, we looked at the histogram for the weights of the generic

model when it was included into the mixture. The decoders were

compared using an ANOVA where the combination of algorithm

and the prior probability assigned to the random target was included as a

fixed effect, and subject was a random effect, and a Tukey post-hoc.

In closed-loop control of the mKFT+KF with no knowledge of

the correct target, whether a switch to the generic model occurred

may depend on the random target’s proximity to the intended

target and the difference between the EMG activations for the two

trajectories. If the trajectory appeared reasonably accurate to the

subject, they may not attempt a switch to the generic model.

Furthermore, since the generic model only really provides control

in the Y direction in our paradigm (see Results), target differences

in X may not be picked up as they may have little effect on the

likelihood of the EMG. To investigate these issues we regressed the

mean weight assigned to the generic model for each reach on the

distance between the random and correct targets in X and Y

separately.

Results

Offline Evaluation of Natural Reach Decoding with mKFT
In our offline analysis of natural reaching, we found that the

mKFT generally performed well in the face of target uncertainty.

However, particularly at the simulated C4 level, the wrong target

was sometimes selected. For the example reach below (figure 2),

when the random target was given a prior of zero (a prior of 1 for

the correct target) the predicted trajectories for the three-

dimensional finger position were close to those of the actual reach

at all simulated injury levels. At C6 and C5 the decoded reaches

were robust to target uncertainty, producing accurate decoding

regardless of the prior probability that was assigned to the random

target (figure 2 a–b). By examining the weights assigned to each of

the trajectories in the mixture, found by multiplying their assigned

prior probabilities by the likelihood of the EMG, we can determine

which of the trajectories was ultimately selected by the algorithm.

At C6 and C5 the weights corresponding to the random target

quickly diverged from their assigned priors as the neural data were

integrated, and eventually reached zero. For C4 however, there

were less neural data and the priors played a larger role in the

weighting; when the random target was assigned a prior of 0.5 or

0.8 the decoder made a mistake and selected the wrong trajectory

(figure 2c). Such errors rarely occurred for the simulated C6 and

C5 conditions, for which more neural data were available.

Even though the mKFT was less effective at C4 when there was

target uncertainty, it was still substantially better than the generic

KF with EMG alone, so long as the correct target was represented

in the mixture (p,0.001 for all non-zero priors of the correct

target, figure 3). The use of the mKFT was clearly worthwhile so

long as there was some prior knowledge of the correct target,

however uncertain. On the other hand, when the random target

was assigned a prior probability of 1 the performance was

dramatically worse for all simulated injury levels (p,0.001 in both

R2 and target VAF). In the case that the target information was

incorrect the generic KF would be far preferable to the mKFT

model.
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Offline Incorporation of the Generic Model into the mKFT
Incorporating the generic model as a mixture component

greatly increased performance of the mixture model when the

target information provided was wrong (p,0.001, figure 4 a–c). In

fact, the accuracy of the mKFT+KF for cases when the random

target prior was set to 1 was only slightly lower than that of the

generic model alone, and this difference was not statistically

significant (p = 0.91). In such cases, while the generic KF was

assigned a prior probability of 0.1, its weight quickly increased as

Figure 2. Example reach, mKFT predictions and weights assigned to the random target, with varying target uncertainty at
simulated injury levels A) C6; B) C5; and C) C4.
doi:10.1371/journal.pone.0086811.g002

Figure 3. Accuracy with standard errors of A) trajectory and B)
target reconstructions for the generic KF, and the mKFT with
different prior probabilities assigned to the correct and
random targets, with varying the amount of available EMG
to simulate different levels of SCI.
doi:10.1371/journal.pone.0086811.g003

Figure 4. Accuracy of the decoding models with varying target
uncertainties for A) C6; B) C5; and C) C4 simulated injury levels.
d)-f) Corresponding histograms for the weights assigned to the generic
model, over the course of all reaches, in the combined mixture case.
The histograms are very similar where the prior assigned to the random
target is less than 1. Error bars and shading represent standard errors.
doi:10.1371/journal.pone.0086811.g004
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the likelihood of the EMG provided evidence that the KFT

component was less accurate.

The histograms for the generic model’s weight pool data from

the entire time-courses of the reaches, and show little difference

depending on the prior for the random target, so long as the

correct target was included (figure 4 d–f). There was, however, a

small cost to the accuracy of the mKFT in these cases, as a higher

weight was assigned to the generic KF for a low proportion of the

time. This suggests that the predictions from the generic model

better described the observed EMG than those from the KFT

components. This may occur for less stereotypical movements that

did not conform to the structured KFT trajectories, or also in cases

when the generic model captured the trajectories particularly well.

When the correct target was included, the proportion of the time

that the generic model had a zero weight declined as the amount

of available EMG was reduced – the generic model was assigned

low, non-zero weights for some of the reaches in the C4 case. With

so little EMG available, the mixture model may have been less

likely to quickly converge to a specific trajectory in some cases.

Nonetheless, the generic mixture component did a good job

avoiding the dramatic drop in performance when the target

information was inaccurate, being selected a higher proportion of

the time for all simulated injury levels.

Closed-loop Evaluation of the Mixture Models
In closed-loop control as in the offline analysis, we found that

reaches were more accurate with target information than with

EMG alone so long as the correct target was represented in the

mixture. Unless the random target had a prior of 1, the target VAF

for both mixture models was higher than the generic model with

EMG alone (all p,0.05, figure 5b). When the random target had a

prior of 1, the mKFT was dramatically worse (p,0.001). As can

be seen in the example reach, despite the effort evident from the

activation of the upper trapezius, subjects could not prevent the

robot from moving in the wrong direction (figure 6a). However, in

cases when the generic model was included its weight often

increased as the likelihood of the EMG for the trajectory to the

random target was low, allowing the subject to guide the robot

with their EMG alone (figure 6b). This resulted in a far higher

target VAF (p,0.001, figure 5b), which while slightly lower, was

not statistically different from the generic model (p = 0.33).

The multiple R2 demonstrated the same trend as seen in the

target VAF, however the R2 using the generic model was not

significantly different to any of the mixture model conditions (all

p.0.08, figure 5a), with two exceptions: the mKFT was

significantly more accurate when the random model had a prior

of 0 (p = 0.04), and was significantly worse when the random

model had a prior of 1 (p,0.001). The primary reason for this is

that the R2 measures the accuracy of the entire trajectory by,

somewhat artificially, comparing it to an ‘‘ideal’’ straight reach.

Also, because subjects received feedback and could interact with

the decoder, the performance with EMG alone was much better

than seen in the offline analysis (compare figure 5a to figure 4c).

Specifically, as we found in our previous study, using the upper

trapezius alone subjects could control the robot position almost

perfectly in the vertical (Y) direction, whereas they had no

horizontal (X) control [14]. Because of the constraints of our

experimental setup the majority of the workspace variance was in

the Y dimension, resulting in higher R2s overall and a reduced

emphasis on the target accuracy using this measure.

Switching between mixture components naturally resulted in

less straight reaches, as evidenced by the path efficiencies

(figure 5c). The mKFT without the generic component had some

reduction in path efficiency when two targets were in the mixture,

indicating that some switching between potential targets occurred.

Path efficiencies were not significantly different between the two

mixture models when the prior for the random target was 0 or 0.2,

but for 0.5 and higher the mixture incorporating the generic

component produced significantly lower path efficiencies (all

p,0.05). While it was lowest for the worst-case scenario where

the random target prior was 1, it was not statistically different from

the generic model at priors of 0.5 and 0.8 (both p.0.98). This

strongly suggests that the generic model was sometimes selected

even when the correct target was in the mixture, resulting in less

straight reaches driven by the subjects’ EMG alone. We can see

that the weight for the generic model was close to 1 for a very

small proportion of the time even when the correct model was in

the mixture (figure 5d).

When the correct target was not in the mixture (i.e. the prior for

the random target was,1) the mKFT+KF switched to the generic

model approximately half of the time (figure 5d). Note that the

histogram includes data from the entire time-course of all of the

reaches, and the weight was always initially close to zero, so this

may under-represent switches that occur later in the reach.

Regression analyses showed that the average weight for the

Figure 5. Closed-loop decoder performance with increasing
target uncertainty, at the simulated C4 injury level. A) trajectory
comparison to straight-line reach; B) target accuracy; C) quantification
of the trajectory straightness; D) histograms for the weights assigned to
the generic model when it was included. The histograms are almost
identical where priors for the random target are less than 1. Error bars
and shading represent standard errors.
doi:10.1371/journal.pone.0086811.g005
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generic model was related to the distance between the correct

target and the random target used by the decoder in Y (R2= 0.75,

p = 0.034, quadratic fit), while it had no relationship to the

distance in X (R2= 0, linear fit) (figure 7). As would intuitively be

expected given the natural role of the upper trapezius muscle,

switches to the generic model were more likely when there was a

large discrepancy in the vertical direction. This also suggests that

subjects mostly used the generic model to correct for target errors

in Y.

Discussion

The incorporation of target information from gaze or other

sources can substantially improve control of a neuroprosthetic

reaching interface, particularly when the set of available neural

signals is extremely limited. We cannot expect a user’s gaze

information to be highly informative at all times, however. Here

we evaluated target information of varying quality to see how our

approach might perform in a more realistic environment where

the target information could become unreliable. We found that the

mixture model did a good job of selecting the correct target in the

face of uncertainty, providing an advantage over a generic model

that did not include target information in all cases when the actual

target was included in the mixture. We also avoided a large

degradation in performance when the target estimate was

incorrect by incorporating the generic model into the mixture.

The mixture including the generic model was clearly superior to

the mixture without it when the target information was inaccurate;

however it was also interesting to compare the performance of the

two mixture models when the correct target was included in the

mixture. While there were no statistically significant differences

between the two models in either the offline analysis or in online

control when the correct target was included, the performance

without the generic model was consistently slightly better offline,

but not in closed-loop. In the offline analysis, the generic model

was sometimes selected instead of the correct target, causing a

small drop in average accuracy. Similarly in closed loop, when

only the correct target was in the mixture, incorporating the

generic model may have been slightly detrimental as it was

Figure 6. Example reaches with inaccurate target information, where the random target was assigned a prior probability of 1. 3-
dimensional robot endpoint position, RMS feature of EMG windows, and mixture weights with A) mKFT and B) mKFT+KF, incorporating the generic
model.
doi:10.1371/journal.pone.0086811.g006
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sometimes selected unnecessarily. However, when the random

target was included with priors of 0.5 or 0.8, the mixture

incorporating the generic model performed slightly better than the

original mKFT (figure 5). Even with the correct target in the

mixture, the generic model possibly provided subjects with a little

added flexibility for error correction, as evidenced also by the

lower path efficiencies. While these differences were not significant

statistically, it seems that subjects could better utilize the generic

model to compensate for errors in closed loop control than

occurred in the offline analysis.

Yu et al. previously demonstrated the effectiveness of the

mixture model approach with up to 8 potential targets in their

mixture of trajectory models paper, decoding with a rich data set

of intracortical single neuron recordings [12]. Their approach was

slightly different, defining separate trajectory models for a set of

pre-defined targets. This would not necessarily allow reaches

within a continuous workspace as was demonstrated here, as fast

switching between the models would make it difficult to balance

the weights to achieve intermediate targets. However, even when

the eight targets were initialized with uniform priors the decoding

was very effective. Given those results it was not surprising that our

mixture model worked well with uncertainty when there was

sufficient EMG available. What is interesting is how well the

model performed with just a single EMG channel, particularly in

closed-loop control. The fact that subjects could easily learn and

adapt to this non-stationary interface was somewhat surprising.

Evidently, there was a substantial amount of switching between

models when the target information was more uncertain and the

generic model was included. Even so, subjects did not report a

noticeable difference in difficulty between the two mixture models

and they were able to take advantage of the generic model when it

was available to improve accuracy.

The subjects’ apparent comfort with switching between

trajectory models is encouraging, and suggests that further

extensions to this approach may be feasible. The interface in its

current form allows only for discrete reaches where potential

targets are identified in the period preceding reach initiation, while

the gaze data during control of the reaches are unused. An

interesting avenue for future research would be to look at

monitoring the gaze continuously during reach control and

allowing new mixture components to be introduced, particularly

if the neural data is not a good fit to the active trajectory.

Researchers have also developed decoders to identify state

transitions, such as between posture and movement classes to

identify reach initiation [19], [20]. Such higher-level approaches

may also be useful in developing a more continuous, gaze-

Figure 7. The mean weight assigned to the generic model for each reach where only the random target was in the mixture, plotted
against the error between the target location and the random target used by the decoder in A) X with linear fit; and B) Y with
quadratic fit. Regression functions are shown with corresponding R2 and p statistics.
doi:10.1371/journal.pone.0086811.g007
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dependent reach control, which could potentially allow users to

correct more accurately for errors than in the current work, or

even to change their minds about the target mid-reach.

The main advantage to incorporating gaze that we have found

in our work has been allowing accurate reaching while reducing

the burden on the user [14]. Adding further signal sources has the

potential to complicate a control interface, but we found that using

the target estimates to enhance the trajectory model created an

intuitive mapping. It is possible that the addition of the generic

model may increase the complexity as users must avoid activating

that model when moving along an accurate trajectory. If things

were going wrong the ability to switch to entirely neural control

would certainly be extremely valuable, but whether this comes at a

cost of additional burden to the user is unknown. One way to deal

with this might be to select the prior probability for the generic

model for an optimal trade-off between accidental switches to the

generic model and ease of switching in the case of inaccurate

target information, an issue that we have not addressed here.

Reassuringly, we found in this study that unwanted switches to the

generic model were infrequent, and subjects did not report finding

the mixture incorporating the generic model to be more

challenging than the standard mKFT. We hope that by allowing

neuroprosthesis users to take control with their neural signals they

will be able to more safely use target-dependent interfaces that

enable more intuitive ease of control.
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1. Johansson RS, Westling G, Bäckström A, Flanagan JR (2001) Eye–hand

coordination in object manipulation. J Neurosci 21: 6917–6932.

2. Jacob RJ, Karn RS (2003) Eye tracking in human–computer interaction and
usability research: ready to deliver the promises (section commentary). The

Mind’s Eyes: Cognitive and Applied Aspects of Eye Movements, Oxford:
Elsevier Science 573–605.

3. Abbott WW, Faisal AA (2012) Ultra-low-cost 3D gaze estimation: an intuitive
high information throughput compliment to direct brain–machine interfaces.

J Neural Eng 9: 046016.

4. Leeb R, Sagha H, Chavarriaga R, Millán JR (2011) A hybrid brain–computer
interface based on the fusion of electroencephalographic and electromyographic

activities. J Neural Eng 8: 025011.
5. Pfurtscheller G, Allison BZ, Brunner C, Bauernfeind G, Solis-Escalante T, et al.

(2010) The hybrid BCI. Front Neurosci 4: 42.

6. Batista AP, Yu BM, Santhanam G, Ryu SI, Afshar A, et al. (2008) Cortical
neural prosthesis performance improves when eye position is monitored. IEEE

Trans Neural Syst Rehabil Eng 16: 24–31.
7. Srinivasan L, Eden UT, Willsky AS, Brown EN (2006) A state-space analysis for

reconstruction of goal-directed movements using neural signals. Neural Comput
18: 2465–2494.

8. Lawhern V, Hatsopoulos NG, Wu W (2012) Coupling time decoding and

trajectory decoding using a target-included model in the motor cortex.
Neurocomputing 82: 117–126.

9. Shanechi MM, Wornell GW, Williams ZM, Brown EN (2012) Feedback-
Controlled Parallel Point Process Filter for Estimation of Goal-Directed

Movements From Neural Signals. IEEE Trans Neural Syst Rehabil Eng 21:

129–140.
10. Mulliken GH, Musallam S, Andersen RA (2008) Decoding Trajectories from

Posterior Parietal Cortex Ensembles. J Neurosci 28: 12913–12926.

11. Hatsopoulos N, Joshi J, O’Leary JG (2004) Decoding continuous and discrete

motor behaviors using motor and premotor cortical ensembles. J Neurophysiol

92: 1165–1174.
12. Yu BM, Kemere C, Santhanam G, Afshar A, Ryu SI, et al. (2007) Mixture of

trajectory models for neural decoding of goal-directed movements.
J Neurophysiol 97: 3763–3780.

13. Corbett EA, Perreault EJ, Körding KP (2012) Decoding with limited neural
data: a mixture of time-warped trajectory models for directional reaches.

J Neural Eng 9: 036002.

14. Corbett EA, Körding KP, Perreault EJ (2013) Real-Time Evaluation of a
Noninvasive Neuroprosthetic Interface for Control of Reach. IEEE Trans

Neural Syst Rehabil Eng 21: 674–683.
15. Corbett EA, Sachs NA, Körding KP, Perreault EJ (2011) Dealing with noisy

gaze information for a target-dependent neural decoder. Conf Proc IEEE Eng

Med Biol Soc 2011: 5428–5431.
16. Kalman RE (1960) A new approach to linear filtering and prediction problems.

J Basic Eng 82: 35–45.
17. Wu G, van der Helm FC, Veeger HEJ, Makhsous M, Van Roy P, et al. (2005)

ISB recommendation on definitions of joint coordinate systems of various joints
for the reporting of human joint motion–Part II: shoulder, elbow, wrist and

hand. J Biomech 38: 981–992.

18. Ljung L (1987) System identification: theory for the user. Prentice Hall,
Englewood Cliffs, NJ 7632.

19. Kemere C, Santhanam G, Byron MY, Afshar A, Ryu SI, et al. (2008) Detecting
neural-state transitions using hidden Markov models for motor cortical

prostheses. J Neurophysiol 100: 2441–2452.

20. Sachs NA, Corbett EA, Miller LE, Perreault EJ (2011) Continuous movement
decoding using a target-dependent model with EMG inputs. Conf Proc IEEE

Eng Med Biol Soc 2011: 5432–5435.

Target Uncertainty in a Reaching Control Interface

PLOS ONE | www.plosone.org 10 January 2014 | Volume 9 | Issue 1 | e86811


